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Abstract—In this paper we investigate the use of proactive Sl
multipath routing to achieve energy efficient operation of ad hoc Q@
wireless networks. The focus is on optimizing trade-offs between .
the energy cost of spreading traffic and the improved spatial O b/'
balance of energy burdens. We first propose a simple scheme ”

for multipath routing based on node proximity. Then combining
stochastic geometric and queuing models we develop a continuum
model for such networks, permitting consideration of different O

types of designs, i.e., with and without energy replenishing
and storage capabilities. We propose a parameterized family
of energy balancing strategies for grids and approximate the ) D1 ) D1

spatial distributions of energy burdens based on their associated

second order statistics. Our analysis and simulations show the rig 1. Comparison of the shortest path routing scheme (on the left) and
fundamental importance of the tradeoff explored in this paper, a typical load-balancing scheme (on the right). The dotted arrows represent
and how its optimization depends on the relative values of the flows for S1 — D1 and the dashed arrows represent flows $@& — D2,
energy reserves/storage, replenishing rates, and network load respectively.

characteristics. Simulation results show that proactive multipath

routing decreases the probability of energy depletion by orders

of magnitude versus that of shortest path routing scheme when

the initial energy reserve is high. were sustained for a long time nodes along the route would

eventually see depleted energy reserves, roughly ‘dividing’
the network into two parts. Subsequently if other nodes need
Energy efficient design and operation of ad hoc multto communicate across this depleted zone they may result in
hop wireless networks is a particularly critical and difficulexhaustion of energy along the diagonal, or require selection
problem. These problems are heightened in the context ¢if routes around this area of the network, which in turn
mobile communications systems and/or distributed sensing &guld incur additional energy burdens. This simple example,
plications, where energy storage and availability may be quéBows how energy depletion along long routes combined
limited. There are many levels at which one can address thifh interactions with future overlapping and/or routing of
problem. Advances in silicon technology can realize energyiditional traffic flows might exacerbate the energy problem.
savings through power efficient circuitry, e.g., voltage scaling, natural solution to this problem is to spread out the energy
while specialized architectures can be devised to allow nodgsrden of sustained sessions so as to obtain a more spatially
to enter the ‘sleep mode’. At the same time power control amlanced energy burden. Specifically, one may split traffic
optimized MAC protocols can bring substantial energy savinggross two disjoint routes as shown on the right in Fig. 1.
enabling networks with thousands of sensors. Particularly, Msuming energy consumption is roughly proportional to the
large ad hoc wireless networks the data originated from|gad this leads to a more balanced energy burden across sets of
source might need to be relayetbag distanceo a destination intermediate nodes. At the same time this scheme may involve

or sink wireline node. Relaying through many hops causg@siarger number of nodes, e.g., a route with four versus three
intermediate nodes to consume substantial amounts of enefigys, and thus an increased overall energy burden.

and thus make energy efficient routing a particularly critical | g paper, we consider the system design aspects of such

task. ) L multipath routing strategies associated with a large number
Consider the network shown in Fig. 1. Two sourcds 52 ¢ hops — we refer to this aproactive balancing of energy

send to destination®1, D2 on opposite ends of the networkyyrgens over multiple routes. Our primary interest here is not

respectively. In the network on the left these sessions qfeyeyise detailed multi-path routing algorithms, but rather to
supported along shortest hop routes. If one of these Sess'W\/@Stigate the design and possible improvements afforded by

This work is supported by National Science Foundation under Grant EC@JCh routing me_Chan'smS' The key Intuition 'S that the more we
0225448. spread the traffic, the more the energy profile of the network
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will be balanced. However, a wide spreading will require some
packets take long ‘detours’, which will incur extra energy cost. g
This tradeoff associated with the degree of spreading is the
main topic addressed in this paper.

The paper is organized as follows. In Section Il we discuss
related work in this area. Section Il introduces a concrete R((S,D) d( D) Rl(S'D)
multipath routing and balancing strategy, and presents contin-
uum and grid models. In Section IV we characterize spatial
energy burdens using a shot-noise process associated with our
continuum model. Section V considers a regular grid network, —-&
and presents an analysis of a parameterized family of energy
balancing strategies. In Sections VI and VII we formulate
and investigate the design and optimization of such spreading 2. iustration of regionsRo(
using second order and asymptotic approximations. Sectidgstination pail(S, D).

VIl includes simulation results and a discussion of complex
scenarios. Finally Section IX presents our conclusion.
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,D) and R1(S, D) for the source-

packets towards the destination wvi@ighboringnodes in a
Il. RELATED WORK hop-by-hop manner. We assume that the energy consumption

There has been substantial research on analyzing, desigrth§ach node is proportional to the traffic it is carrying, and use
and implementing energy conserving routing protocols suitafée terms ‘traffic load’ and ‘energy burden’ interchangeably.
for ad hoc networking applications. Let us highlight a few of The hop length between every source-destination pair is
these. In [1] a characterization and algorithm determining t@§sumed to be high, i.e., we focus on the spatial energy burden
most energy efficient route between two nodes is proposé@sulting from long routes. In this study we do not explicitly
However, it is not clear whether using such routes exten@@nsider energy consumption caused by channel contention.
‘network lifetime,” nor how this would impact network ca-We assume that the network is lightly loaded and transmissions
pacity for non-homogenous traffic loads. By contrast, [2] arff€ Properly scheduled so that the energy consumption caused
[3] propose and evaluate routing mechanisms to maximip¥ interference and contention is negligible. This simplifies our
network lifetime based on nodes’ current residual energyscussion. The role of the energy burden caused by channel
reserves. Unfortunately, scalability and the effectiveness 'gferference and contention is to be included in the future
greedy routing to spread energy burdens are a concern. ek
work of [4] takes yet another tack — they propose packet-levelAn example which fits our assumptions is an energy-
randomized routing in order to proactively balance energphstrained large-scale sensor network with light traffic. Pack-
burdens across the network. A unifying principle emergé¥$s generated at a sensor may have to take a large number of
from this body of work: the tradeoff between minimizing théops in order to be delivered to other locations in the network.
energy expended to carry an offered load versus the balancingince traffic generated by a node is assumed to be relayed
of energy burdens across the network. To the best of d¥ily to its neighbors, the term ‘neighbor’ needs to be defined
knowledge, the spatial character of this tradeoff has not beigcisely. A reasonable choice of neighbors is one based
studied. The primary contribution of our work is the use dn proximity. We shall model the locations of the nodes as
a stochastic geometric framework to analyze, and then wdiked and following a spatial point process & plane. A

towards rea”zing this tradeoff in an ‘Optima|’ manner. natural notion of proximity and neighbor relationship can be
introduced via the Voronoi tessellation and Delaunay graphs
[1l. SPATIAL MODELLING induced by the locations of the nodes. These are discussed

This section is divided into three parts. We start by statirfRglow.
our model assumptions. Then we introduce a simple multi-pathSuppose the locations of the nodes constitute a point process
routing scheme based on spatial relationships among nodson theR? plane . Each point; € ¥ serves aseedfor a
Next, we propose a continuum model where we regard tRell V(z:),
field of the wireless nodes as the infinitesimal ‘medium’ that X
carries fluid, i.e., the traffic flow. This leads to a simple shot- Vizy) ={y | lvi =yl < |z; —yl,Va; € ¥}
noise process model for the spatial field of energy expendituigshe Voronoi tessellation induced by. If V(z;,) NV (z;) is

which is amenable to analysis. not an empty set, we refer ¥(x;) andV (x;) asneighboring
) cellsand we say that; andz; are neighbors.
A. Model assumptions A Delaunay graphis a graph whose vertex set & and

In this paper we will use a simplified model for energyhose edges connect nodes that are neighbors. We denote the
expenditures associated with data transmissions. Nodes Betaunay graph a&/(¥, E') where E is the set of Delaunay
assumed to share a common transmit power level more thedges. Routes considered in the discussion below will be based
sufficient to guarantee the network is connected. Nodes relaythe Delaunay graph and they will be referred to as Delaunay



Fig. 3. The figure shows the construction of level 1,2 and 3 routes for nSdesl D, from left to right. The route at each stage is shown with solid lines
and the shaded regions are the cells for the nodes in routes. The nodes marked by an arrowcemeettiersat each route.

routes. We shall assume that the spatial distribution of nodes connectors, updat#&’s(.S, D) and construct the Level-3

is fairly uniform and sufficiently dense such that each node route.

can reach its neighbors. 6) For w > 4, determine the new set of nodé§, (S, D)
that are neighbors aV,,_» and fall in R(,, moq 2). FOI-

B. A multi-path routing scheme based on the Delaunay graph  lowing the above steps, the Leveltoute is recursively

. . constructed.
Consider a Delaunay route connecting two nodgse; € . . . .

¥, and has a minimal length, i.e., sum of the Euclidean IengthThe basic idea is FO recursw_ely construct hlgher level r_outes
of its edges. This path is referred to as Bisortest Delaunay b_ased on nodes which are neighbors of those included in pre-
Route(SDR) and its length is a good approximation for th!0Us levels but alternating b_etweeﬁtb(S, D) and Rl(S’.D)
straight line segment that conneatsandz ;, see e.g., [5], [6]. In order to balance spreading cost as the levels increase.
Note that the SDR is based on the Eutj:liidean no'rm 'thus t-lﬁ ese routes can be obtained based on a distributed routing
SDR may not coincide with the minimum hop route ,We wilpcheme since the only information required is the location of

see in the sequel (Section VIII) that this small difference ma{gighboring nodes, the source and the destination. We confine

impact thedistribution of energy expenditures significantly. aying nodes to the regio% (S, D) ande_(S, D) so asto
Based on the SDR. we pronose the followind simple COIQ_revent routes that extend backward. As will be clear from the
struction to determiné a sgt o? additional pathsg betV\I/Deen t\%nstruction, the role of connectors is to ensure connectivity
nodes, says, D € . For purposes of visualizing its spatialv'a Delaunay routes amortgy D and dlfferer_1t levels of routes.
An example of our route construction for a source-

characteristics we present a geometric view of this ConStrUCtiSQstination pair(s, D) is illustrated in Fig. 3. At each level
. b . . 1

the level connectors are marked with arrows. In the third step,
1) Draw a straight line segmeni(S, D) betweenS and the Level-3 connector anB) was not directly reachable via a
D, and draw two additional lines, through and D pelaunay edge (dotted line), thus a SDR between those two
and orthogonal tal(S, D). Let Ro(S, D) and R, (S, D)  nodes is constructed to connect them.
denote the open sets above and below the line segmenfye shall refer to this construction as proximity-based mul-
d(S, D), see Fig. 2. tipath (PBM) routing which gives us a concrete set of paths
2) We letN1(S5, D) denote the set of nodes included in th@yer which to distribute traffic so as to spread out energy

SDR fromS to D, and refer to this route as the Level Ipyrdens. An approximate model for the multi-path routes by
route.S andD are referred to as thisevel-1 connectors this construction will be considered in Section V.

3) Now find the set of noded’» (.S, D) which are neighbors ) )
of N1(S, D) and fall in Ro(S, D). Create a route that C- Regular grid and continuum models
connects the nodes iV, (.S, D) with Delaunay edges. As shown in Fig. 3, our multiple routes are spatially
We refer to the two nodes located at each end of thitustered. We shall refer to such clusters asstegial footprint
route asLevel-2 connectors of a multipath routing scheme. In order to study the interaction
4) Construct a SDR for a Level-2 connector to its closestmong such footprints given a traffic load, and in particular
Level-1 connector and repeat the same for the other cahe spatial energy burdens they induce on the network, we
nector. if this SDR crosses new nodes, updsit¢S, D) adopt two idealized models.
by adding these new nodes i, (.S, D). Now the nodes  First, consider a PBM construction in a demsgular grid
in No(S, D), S andD can be connected via a Delaunayetworkwith each grid dimension i$ x 1. The left part of
route which is referred to asevel-2 route Fig. 4 shows an example of such a construction for several
5) Next determine the set of node¥;(S, D) which are SD pairs. A source transmits a sequence of packets to its
neighbors ofNy (S, D) but falls in R, (.S, D) this time. destination for some amount of time, and we refer to this
Following a similar process as above, find the Level-frocess as aessionSuppose sessions ‘arrive’ to and ‘depart’



O 0 0 O O 0O 00O OO0 OO0 e 0O 0 O 0 O
O 0 0 O & © ©]J]o o o o0 0 O O oo o]0 ©
ooooJ, © © oJlo o o0 o0 o of0 © © 0 olo o
ofe—<&- To-<o-9fc]o oo o O O o o oflp o
o|le-olte-o-elelé-e-ofolo oo oo 0 @ o o olb o
olo--e)e-6-sloto-o-ofolo oo g o g2 ofo fo @ olp o
O OO @ O ®© © ©Jo o o © OO0 O |0 olo o
O ol® © O @———@———@——@ o O O O O o lo—e—TT0\ O
o Jo oo oleoe-oto|c o e O o ofo\o
0@ ¢ go-o-olo-o-ololo o ® ® O O O
o@@@@ea,’@——@——@ooo e e=t"0]|0 O
00 O0O0O0OO0OOOOOOO OO0 O 00O O 0 O

Fig. 4. On the left, the footprints are approximated and adjusted to the grid structure so that the footprints have the regular shape and the topology along
the grids. The figure on the right shows the hypothetical square-shaped random sets cast upon the regular grid network.

from the network. Upon departure, each session has depleted
by possibly different amounts, the energy reserves of locations
(nodes) traversed by its paths — the session’s support set or th
spatial footprint
We take a slightly different view of this process. For each
node that participates a session, we draw a square or para / .
lelepiped ‘cell’ of unit area centered at the node depending on Sprea_dl ”9,1
the spatial orientation of the session. By merging these cells, width
we obtain a shaded polygon for each session as on the left of
Fig. 4. We assume that the initiation of a session corresponds *
to the ‘arrival’ of a polygon into the network and the nodes
that fall inside the polygon participate in that session. These
nodes comprise the footprint of the session.
Next, we associate each polygon to a random closed sefigy 5- A realization of the energy footprints for sessions in ad hoc network.
2 . . A Jootprint is assumed to have elliptical shape for the purpose of illustration.
R4, e.g., a randomly oriented square as on the right part o
Fig. 4. These session arrivals correspond to ‘arrivals’ of these
random sets, e.g., a square on the right of Fig. 4 ‘generates’ a
session footprint. Note that the footprint generation processcllection constitutes a spatial-temporal point process. As an
now reversed, i.e., we assume that thereagpeiori arrivals of example, see the right of Fig. 4 where the black dots represent
random sets in a plane and we ‘tailor’ each shape to a regula@ center of masses for various footprints.
grid structure as an approximation. A possible tailoring of such Next we introduce a continuum model. Consider the limiting
shape is given by the following procedure. process of the above construction such that the density of the
1) Find the end tip locations of each random square am@des becomes very large. We can think of an infinitesimal
find the nearest nodes to those points in the grid, ma@kea in space as corresponding to a node with some initial
the nodes as the SD pairs. energy reserves. Fig. 5 exhibits a realization of the process
2) Draw a regular or parallelepiped square of size 1 arousdpturing the energy burdens incurred over a period of time
each node such that the node is at the center of eactonly sessions’ footprints are shown. As shown in Fig. 5,
square. Appropriately choose the shape of each squawery footprint is assumed to have some well-defined, possibly
according to the orientation of each footprint: a heuristi@ndom,continuumshape. Here the footprint itself plays the
example is on the right of Fig. 4. same role as the random sets in the previous grid model.
3) Merge the squares to form footprints around each SChe source and destination nodes are located at each end
pairs as on the right of Fig. 4. of the footprints. Here we denote the ‘length’ of a footprint
A careful comparison of the examples in Fig. 4 should givhich corresponds to the distance between a SD pdirasd
the idea. the maximum ‘width’ of a footprint which is related to the
For purposes of modelling the dynamic spatial behaviog®reading factoras w.
of these random sets, we assume that ghemetric center Each location within a footprint corresponds to a in-
of massof each random set ‘falls’ into &2 plane whose finitesimal node which may experience different amount of

energy burden *footprint’
of asession

/

1]

source destination




load/energy burden. Since the footprint is a random closed sg¢tiocationz € R? has a shot-noise representation given by
in R2, we shall define doad distributionfunction that maps
a point in the footprint to the relative load intensity it sees. Glz,1) = Z h(z =@, Pi). @)
Essentially such load distribution function depends on (1) a i €lly
particular strategy of ‘spreading’ traffic within a footprint, (2) For simplicity, we assume thdil is a Poisson process,
the degree of spreadingy and (3) the connection length homogeneous in time and space with the constant intepsity
We will characterize the relevance of these parameters to her unit time per unit area. Thdi, is a homogeneous Poisson
energy burden profile in a network in the rest of this papgwoint process with intensityt. Next we state several known
Let us assume that every SD pair carry the same amountre$ults from the shot-noise theory. Sirldg is stationary, we
traffic. Intuitively, the footprints associated with a larger can consider a typical node as being at the origin to obtain
and the samé occupy more area, but the energy load per urtite following result.
area would be lessened — this will be further quantified in theLemma 1:(See [7].) Let us defin€&,(t) := G(O,t), the
following sections. energy burden at the origin. Also lgt™)(t) be thenth order

As this model suggests, it is natural to introducehmt- cumulant ofG(t). By the homogeneous Poisson property of
noise processn R2. Footprints are associated with a poinil;, we have that
process corresponding to the collection of centers of masses,
and each footprint contributes to energy burden at certain X" (t) =Xt E [/ h(%@o)”dx} ~
location depending on its shape and load distribution function. o
Furthermore, if multiple footprints overlap at a location, th®efine the normalized meanand variances? as:
burden at that location is aadditive one contributed by the

overlapping footprints. We will use the shot-noise model to w:=FE [/ h(:c,fbo)dz] , (2)
capture spatial characteristics of the energy burden, and later, ®o
a regular grid model to parameterize such characteristics for 02— E [/ h(x7<I>0)2dx} ) ©)
system design purposes. ®y

Then we have that
IV. CHARACTERIZATION BY CONTINUUM MODEL

A. Shot-noise formulation
Var[Go(t)] = Mto?.

The continuum model proposed in the previous section can
be mathematically formalized as a shot-noise process. Let
®, denotes a random closed subsetR5f corresponding to  As mentioned earlier, the functidr(-, ®,) captures both the
taking a fixed shape (footprint) with center of mass at thighape’ and how the flow is spread within a typical footprint.
origin and a random rotation il 27). We will refer to®, as Thus it is one of the design choices one can make to control
the distribution of a typical footprint. The energy burden fothe mean and variance of the energy burdens. Although using
an infinitesimal region (node) falling within the footprint isonly these two moments to describe the statistical properties
modelled as follows. We define thead distributionfunction of G(t) may not be sufficient, the following theorem shows
h(-,®0) : R? — R, as giving the energy burden, such thathat it can be a good approximation (see [7]).
for y € R?, if y ¢ ®, then h(y,®y) = 0 and otherwise = Theorem 1:(Asymptotic normality of shot-noise process)
h(y, ®o) assumes some nonnegative value correspondingGonsiderGy(t) defined in Lemma 1. We have that
the energy burden in an infinitesimal spatial area locateg at Golt) — M

: o 0 Hod

for a footprint®, centered at the origin ? —

We assume that the centers of mass of sessions constitute a Ato
spatio-temporal Poisson point procdssvith intensity \(z,¢) Where N(0,1) is the standard normal distribution.
at locationz and at timet. Let us denote byll, a spatial From this theorem, we have that, for largethe probability
point process iMR? for the centers of the sessions/footprint®f energy burden exceeds a prescribed Iévisl given by

N(0,1) as t — oo

that have been been offered to the network prior to time b— Mu

ThusII, has the spatial intensity of) A(z,u)du at location P(Go(t) >b) ~ ¢ ( T > ; 4
x. Each pointz; € I, has an associated footprint denoted by 1 OOU

®,. We assumg®;} are i.i.d. copies ofd, and are invariant p(u) = 7/ e 2dy. (5)
to shifts inR? for all z;. Thus the contribution of the energy Var Ju

burden on locationr from the session at; with ®;, will Without loss of generality, let us assume= 1 throughout

be h(z — z;, ®;). Note since we equivocate load and energie rest of the paper. In order forto be effectively large, we

burden,i(-, ;) depends on how a routing mechanism chooseged a typical node in the network to see a large number of

to spread flow of sessionwithin its footprint ®,. footprints that overlap on average. For example, if the typical
Suppose that all the nodes initially have identical enerdgotprint has fixed, rectangular shape with its length 20

reserves at time 0. Then the total energy burden accumulated spreading factow = 5, then a typical point in the field



experiences the overlapping of 100 footprints on average when
t = 1. Thus the distribution of energy burden may be safely
assumed to be roughly normal even for moderate valuégs of

B. Depletion probability, network lifetime and variance-
optimal schemes

A common criterion for energy performance of a network
is lifetime, e.g., the time before some fraction of nodes will
be below a certain battery level. Our objective lies in the
complementary question: given desired network operation
time how can we minimize the fraction of the depleted nodes?
For example, if O.ne wishes to operate a sensor net_Work f(?l":ia. 6. The functior(-, ®) where® is the whole square area that contains
week, what fraction of nodes are expected to survive dur"ﬂ& nodes represented by circles ah@, ®) takes the continuous values
a week and what is a proper multi-path routing strategy tepresented by the heights of the shaded region.
achieve this? We believe this problem is of more practical
interest in engineering such networks. To address the above |
guestion, we shall use the normal approximation in Theorem [ -

1.

Let 7 be the desired time for network operation. Then the
fraction of nodes that have not exceeded the critical Iével O
during 7 is given by (0,2)

b—Tu
. 6
o (“=2) ©  ©0

k of 7u which is defined as the mean energy consumption of
thebaselinescheme, i.e., a scheme without multi-path routing.
Thus the critical leveb is SpGQIfled in terms ofa facmﬂlmes_ Fig. 7. Topology of the regular grid footprint. The coordinates of locations

the mean energy consumption of baseline scheme dutingare shown for some nodes in their lower left corners. The source and the

Thusb = kT and let us deﬁnek(q—) as follows. destination is marked by and D respectively and the dimensiorisandw,
- of the grid are shown.

kp—p
21(7) == VT = (7)
g V. PARAMETRIZATION BY GRID MODEL
Thus to reduce depletion we wish to maximizg(r) for a  |n this section we revisit the regular grid model proposed
given 7, i.e., minimize the probability of depletion(zx(7)) in Section Il to study flow distribution that minimize?.
by changingu ando. Nodes are assumed to be tiled to form a regular grid where

Eq. (7) provides us with crucial insights. Certainly we woulthe spacing among the nodes is 1. To be consistent with
like to minimize bothy and o, however as we will see later our continuum model®, represents the typical random set
that there is d@radeoffbetween these parameters, i.e., we canducing a footprint, e.g., a square on the right of Fig. 4. The
decreaseu at the cost of increasing, and vice versa. The |oad distributioni (-, ®,) is now given as a continuous function
optimal tradeoff will depend or. If ku is small, one might taking values of the allocated rate at each node and assuming
try to decreas@. Conversely, it is relatively large, one might the form of step functions as shown in Fig. 6. In the figure,
prefer strategies that give smaller the heights represent the values of such rates/gndb,) is

In our study we focus on schemes that minimizg i.e., constant within a grid square where the randomdsgts the
variance-optimal strategiesThus we assumé is moderately whole square area containing the nodes. The integrations in
large, i.e., all the nodes have sufficient energy reserves in {8 and (3) can be approximated sssnmation®f traffic load
beginning so that they do not suffer from depletion wheat each node. Thus the problem reduces to a flow distribution
only a few sessions overlap a given location. However, tl a grid. With these assumptions af, ®,), we derive the
significance of such variance optimal strategies does not coaxpressions of (2) and (3) suited for the grid model.
only from such assumption. From (7), we see thahas Assume thatd is a rectangle of dimensiohx w wherel
multiplicativefactor onz(7) and in [8] we show that variance andw are assumed to be fixed for the present, and has random
optimal schemes yield values that are very close to the optimatation uniformly distributed irf0, 2). In spite of its random
zr(7) even for no large values df. rotation, we assume, approximately covers a footprint of



length ! grid steps and the maximum width af grid steps
by the argument of ‘tailoring’ random sets to grid structure in | = session length
Section Il

A footprint is defined as the set of nodes in the grid that
carry nonzero flow, and its shape is shown in Fig. 7. We
assumew is an odd integer to maintain the symmetry, and
that it does not exceeld which is reasonable since spreading
beyond! is not likely to be useful, which will be shown later.

We introduce some notation. We label each node with an
integer coordinatgs, j) placing the source node at the origin
as shown in Fig. 7. The horizontal flow rate from nddgj) to
(i+1, ) is denoted by; ; and the vertical flow rate from node
(¢,7) to (¢,7+1) is denoted by, ;. We denote the flow or the
energy consumed at nodg j) by e; ;, i.e.,e; ; :=a; ; +b; ;.

Define the se := {(4,7) | 0 <4 <, |j] < (w—1)/2}.
Under the above construction, we have that

=M

.Uyipim Buipeauds,

equi-energy level set

Fig. 8. The optimal flow allocation whew = 5 andl = 7.

we will simplify the problem by adding an extra constraint of
p=El[ botgddx Y ey @
o (irj)€H a2k = —, (bl < (w=1)/2), (14)
o = E[/ h(z, o)da] ~ Y €7, (9) i.e., the flow rates are equal along the MA. Our rationale
o (i,4)€eH is that, first, this yields a closed-form, simple and intuitive

solution. Second, it gives a good approximation especially for
givenw and! large values o_ﬂ. In [8], we show that the solution obtainec_i
) . .., for the suboptimal scheme converges to the optimal solution
Suppose that the flows are symmetric with respect-to; when/ is large.
axis and; = 0 axis wherel is assumed to be_gn eyen NEYET For the modified problem, the solution can be obtained by
fo_r S|mpI|C|ty. Espemally-we refer to the axis= 5 as the exploiting the convex characteristic of the objective. Also note
middle abscissa, gbbrewated.as MA. ) _ . that it suffices to specify; ; as the solution, since it can be
We formally define the variance optimal flow distributionsp, o that by solving; and the constraints, we can obtain

We wish to minimize (9) by properly setting ; andb; ; for

problem as: a;; andb; ; for all (i, 7).
Problem 1: Lemma 2: The solution to Problem 1 with the additional
S constraint (14) is, for all(z, j) € H,
Minimize: Y~ ef; = Y (ai; +bij)>. (10) (14) (i.7)

igen | iben Qi+ )+ 170 il i< et

Constraints: €, = {2(|1[ =i+ g+ 137 | _hl| + 171 < 5

w, otherwise.

@i+ bij = ai—1j + bij-1, a1 Proof: See appendix. (]
ao,0 +bo,o =1, (12) An example of such a flow assignment is illustrated in
aij, bij >0, Fig. 8. The dotted lines are contours that represent level sets

ays; >0, for j=£(w—1)/2, (13) of nodes which have thg same totlallflow. The value of the
levels decreases harmonically, i€, 3, =, . ..) as the contour

expands outward from the source. AJl; andb; ; are specified

H?ethe figure.

For this flow assignment, we have that

Variables:a; ;, b; ;.

where (11) corresponds to the flow conservation at each no
(12) the source emitting 1 unit of flow, and (13) the definition
of a footprint. - s Z S w i’ (15)
In addition to flow conservation, note the (11) also assumes ek 2 2w
that the flow routed for the nodes to the left of MA moves away ’
from the source, and at the nodes to the right of MA towards 9 I 1 1 2
the destination. This ensures that traffic does not flow in an? = Z “%i~ w2 (1 T wz) T Z 2%k —1°
inefficient manner where energy is wasted without reducing (hi)eH k=1
variance. Constraint (13) comes from the specification of the (16)
width w of the footprint, i.e., the maximum width that the The following observations are in order. For< w < I,
nonzero amount of flow can be spread over. we see thaty increases withw, i.e., the mean energy in-
Standard optimization techniques such as the projected greeases with the spreading width, since the flow travels longer
dient method [9] can be applied to solve Problem 1. Howevdistances. Howevery decreases withw, i.e., the variance

L3 ]



10 ‘ : occupies a regiomd C R2. Consider the probability that the
' node with the highest energy burden exceeds the prescribed
level b, i.e.,

P(sup G(z,t) > b). a7)
z€A
We can estimate the asymptotic value of this probability as
b — oo via extreme value theory for homogeneous Gaussian
fields, e.g., [10], [11]. Denote the desired network operation

energy depletion probability
=
(=)

3 © k=140 time by 7 as before, and consider the normalized energy
10 ¢ - k=1.45 | ] burdenZ(z,t) := (G(x,t) — tu)/v/to where\ = 1. Let us
| B t=igg assume that at, we have a spatial covariance functiof(y),
- K=

: ie., r-(y) = ElZ(x +y,7)Z(x,7)] for somey. Since the
107 ‘ ‘ field is isotropic, this function depends only on the norm of
0 5Spreading tactor 2 15y, denoted byly|. Suppose that the following holds for some
positive constant, and fory with very small|y|.

Fig. 9. A numerical evaluation of optimal design of spreading parameter by

the regular grid spreading strategy discussed in Section V. The hop length TT(y) ~1-— a\y|o‘ , as \y| — 0.
is fixed to 20 and the initial energy reserve paramétés varied. Note the
change in the tradeoff points marked by arrows, i.e, the optimahoves
from 3 to 5 with increasing:.

Here o denotes the infinitesimal order of decay of the co-
variance with the distanck|. Again assume thai is given
by kur wherek is large, then based on the Poisson clumping

decreases with the degree of spreading. Thus one canpguristic [11], we can rewrite and approximate (17) as follows.
minimize the mean and the variance simultaneously. Also if
is large such that it is comparable tothe cost of spreading P(jgg Z(@,7) > 2r(7))
will reduce the benefits of spreading. N 2/ 4/a

The interesting case is vl?/herleisgmuch larger thanw. NH“‘AM/ {a(m)} ! (z(r) - (18)
Clearly, the mean energy is roughly invariant for small chang@ghere | 4| is the area of the region and H, > 0 is the
in w, but the variance is sensitive to — the dominant term .gimensional Pickand's constant which depends onlyxon
- Thus for a load that traverses a long route, the benefit frajgs see that the depletion probability is proportional to the
spreading is large. For detailed discussion, we refer the readgigsical area of the network, and is related to the covariance
to [8]. structure of the footprints. Comparing with the analysis for
typical node case, we have the common tefta, (7)), but
there is the extra ternjz,(7)}*/® which gives an additional
penalty whenz(7) is large.

Thus we expect that, by increasing the overall rate of

In this section we numerically evaluate the depletion prolecay in covariance will decrease and one will observe a
ability of the typical node, combining the estimates (15) angimilar tradeoff as seen earlier in Fig. 9, but the curve will
(16) with z;(7). Here 7 is assumed to be 1 anldis set to pe flatter due to the penalty term. This has been verified by
20. Fig. 9 exhibits a plot ofp(z;(7)) for varying &, i.e., using numerical evaluation along with estimationagfe and
varying the initial energy reserve of the network versus thg (7). For details we refer the reader to [8].
spreading factorw. Clearly, there existav that minimizes
the depletion probability for each: see the points marked /||, DEsicN TRADEOFES NETWORKS WITH ENERGY
by arrows. As expected, for the case where nodes have more REPLENISHING CAPABILITY
initial energy reserves, we should use a largeiThe intuition
is that, whenever the nodes in the network have large residuaNext we consider the case where nodes have capability
reserves, they should cooperate to balance load on the netwéfkreplenishing their energy at constant rate cotinits per
i.e., increase the nodes participating in carrying a flow, but wfit time. The energy storage capacity of each nodé. is
to certain degree the load balancing itself does not overlo¥¢¢ model the energy level of a node by a queue where

VI. DESIGN TRADEOFFS NETWORKS WITHOUTENERGY
REPLENISHING CAPABILITY

A. Depletion probability of the typical node

the network. arrivals correspond to energy burdens which are served, i.e.,
_ - ) replenished at rate. Note that the dynamics of the queue and
B. Depletion probability of the maximum burden node  hejr physical interpretations are reversed: ‘illing’ the queue

As a consequence of the previous normality result, weith energy burden corresponds to ‘consuming’ its energy
can also approximate the spatial energy burden pattern aseserves. Thus, we are interested in the likelihood that the
stationary, isotropic Gaussian random fieldR3. Consider queue length exceeds the leveMe consider two regimes as
G(z,t) in (1) for z € R% We assume the whole networkfollows.



A. Nodes with small initial energy reserves where X; = S; — ¢ and S; is the total energy burden per unit

Suppose first the initial energy reserve is small relatine slot, and: is the replenished energy per time slot. These
to the typical energy expenditure of a node. Thus we migAynamics correspond to a Lindley process, and sikiceare
conservatively study the case where the reserve at any pdil-» we can readily apply the following results on the decay
in time is virtually zero. Consequently, it is necessary th&&t€ function.
the instantaneous cumulative energy burden on a typical nodd Neorem 2:[13] Let us assumgV; } is stationary and thus
does not exceed theate of replenishing Thus we estimate Stable under conditio’[X;] < 0, i.e., E[S;] —c < 0. If {X;}
the probability that an excessive instantaneous energy burdé® i-1.d., thend* satisfies
is seen at a typical node. The spatial energy burden per unit
time is simply a shot noise process with the spatial density of p(07) =0, @9(9*) >0
A. Thus a design goal would be, for given threshold probability

_ 0X;
¢ and at typical locatiorr, that wherep(¢) = logE[e”*+]. _ .
We can readily obtain the required cumulant generating

P(> " hz—2;,®;) >c) <6 (19) function as follows.
zi €10 Theorem 3: The cumulant generating functiafi(d) of .S;

which can be estimated by using Chernoff bound combind&igiven by
with (15) and (16). We leave this to consider the more 05 Oh(z.B0)
interesting case where nodes can store and replenish their C(0) =109E[e”” ] = AE[ [ {e"%%0) —1}dx].
energy reserves. o

. o Hence we have the rate decay functie(@) is given by
B. Nodes with large initial energy reserve and small replen-
ishing rate p(0) = AE[ [ {e®"(®®0) _1}da] — O

In this regime the energy replenishing rate of a node is much ®o

smaller than the rate of consumption, but nodes have langeder the stability condition
energy storages. Consider a typical node covered by multiple

session footprints. The energy load requests for each footprint AE[ | h(z,®g)dx] < c. (20)
is buffered into the node’s energy queue which is replenished Lo
at ratec. An energy request fills the queue, i.e., consumes Proof: See appendix. ]

energy at a constant rate. This can be modelled by using &he stability condition relates the replenishing rafeand
continuous load model such as fluid queues, e.g., see [1{Pk rate of new requests per unit ardatimes the average total
However, since the energy consuming rate is assumed todseergy request within a footprint. The rabtof p(6) = 0 may
much greater than the replenishing rate, we can assume t@tfound numerically. Using expressions (15) and (16) and
energy burdens are offeréastantaneouslyo nodes. Also the the regular grid approximation, some decay rates with varying
offered load at the typical node depends only on its locati®preading factors are given in Table I. Hére 8 and ) = 1,
within the footprints that ‘hit’ the location. Furthermore,and let us denote the critical replenishing rate to satisfy the
footprint arrival process is assumed to be a homogeneauability condition whenw = 7 asc*. The replenishing rate
Poisson process in time and space. Thus\afGI/1 queue is set toSc* whereB = 1.2 and2.0.

can be used as an approximate model. Again we observe the tradeoffs associated with different

In this regime, we intend to find thesymptotic decay rate rates of replenishing. Whef = 1.2, the optimal spreading
of the queue content which is an indicator of the probabilitfactor is 3. Meanwhile, with a higher replenishing ratesof
that the energy burdens exceed a large initial energy resepvg, the optimahw is increased to 5. The intuition here is that,
of b. For a stable, single-server queue, we denote the steadjth higher replenishing rates, one can spread traffic further to
state workload byWW. If the following condition is satisfied enjoy the spatial balancing effect. However, if the replenishing
for someé* > 0: rate decreases close to the critical value, the mean energy cost

b~Yog{ P(W > b)} b—oo o~ ]'Eo sprgad is no longer negligible so that smaller spreading
actor is preferred.
then we refer tof* as the asymptotic decay rate [13]. We
use the results in [13] to describe the behavior of the tail
probabilities.

Let us define the problem. The amount of energy requests Spreading factor] Decay ratef*
are assumed to be i.i.d. but its distribution is not heavy-tailed B=12] B=20
since every footprint is assumed to occupy a finite area. We 08673 | 17125

. . 1.2506 | 2.7080
denote the virtual workload for the energy queue at time slot

1.0965 | 2.7593
(i,1+ 1] for i € Z asW; . Then we have that 0.7965 | 2.6831

TABLE |
DECAY RATES WITH VARYING SPREADING FACTORS

~N| o w| k| &

Wip1 = max[W; + Xi11,0] = sup[W; + X; 1™,
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Fig. 10. Energy depletion probability for nodes without energy replenishirigig. 11. Energy depletion probability for nodes with energy replenishing
capability. » and o represents the mean and the standard variation of energgpability.
expenditure of each scheme.

of the spreading factow along with the shortest routing
VIIl. SIMULATIONS scheme. A poini(z, y) in this plot is interpreted as follows:
A. Basic setup ‘the probability that the energy expenditure of a typical node

In this section we simulate several scenarios to furthifill exceedz is y'. If x is the MER,y is the probability that
explore the benefits of proactive spreading. We will deal with typical node is depleted.
stateless routing schemes, however we extend the idea o€t us consider only proactive routing first. When the MER
proactive spreading to routing schemes with states, e.g.iSdess than roughly 20 units, routing with a minimal spreading
routing depending on nodes’ residual energy reserves. THR&tor (w = 1) performs best. However, as the MER increases
performance metric is evaluated given a maximum ener§y more than 25 units, proactive multipath routing with the
reserve (MER), what would be the probability that a randomfgrgest spreading factéw = 5) outperforms the others. These
selected node is depleted of its energy reserve. This metric ig@$ults are consistent with previous discussions, since if we
fundamental importance in an engineering perspective, sirfft@ve the high MER we prefer a scheme with a lower variance
for a given network operation time and a MER, we may wisi the energy expenditurev = 5) at the cost of higher mean
to find out the probability of a typical node having deplete@nergy expenditure, and vice versa. These tradeoffs occur
of its reserves, or equivalently, the fraction of depleted nodédien the maximum reserve is between 20 and 25 units in our
in the network. simulation. The SPR has a lowest mean energy expenditure

An average of 400 node locations are generated onx&200 but with the hlghest Variance, and suffers from the worst
unit square according to a homogeneous Poisson point prode@gdormance in ‘tail behavior’, i.e., the lowest slope in the
with intensity 1. Session arrivals are homogeneous in spaggcay for the probability of depletion with the MER. Also
and a total of 200 sessions are offered at each simulation. E&@t€ that it has different performance as compared to the SDR
session offers 1 unit of load per unit time with a (randomjw = 1) case: the SDR performs better due to its steeper
holding time of 1 unit time (on average). We simulate sessié#PPe in the tail probability. We verified that, for SDR, the
arrivals by picking two nodes at random, which are given b3hape of the empirical histogram of energy burden indeed
source-destination pair and then setting up a unidirectiod&sembles the Gaussian p.d.f., meanwhile for the SPR we see
flow. We have used PBM route construction introduced @ monotonically decreasing shape with a heavy tail [8].
Section III, and the flow is equally divided to each path in 2) Nodes with replenishing capabilityig. 11 shows the
order to approximate the scheme in Section V. Note that in o@if€rgy depletion probabilities when the nodes have the capa-
simulation, the ‘shortest path routing’ (SPR) is a routing th&¥lity of replenishing their energy reserves. Here each connec-
takes the minimum number of hops on the Delaunay grapht@gn arrives to the network with interarrival time is randomly
nodes. This must be distinguished from the shortest Delaurfé§tributed in[0, 1] time unit and has replenishing rate of 0.125
routing (SDR) which is a PBM routing without spreading, ofNergy units per unit time. The benefit from the proactive

equivalently, with the spreading factar of 1. spreading is greater than that seen for the non-replenishing
] case. The intuition here is that, for larger, the average
B. Scenarios number of nodes that participate in a session is greater than

1) Nodes without replenishing capabilityFig. 10 shows that of a scheme with less. Thus more nodes have a chance
the average energy depletion probability for several valuesreplenish their energy reserves, which results in a reduced



10° it benefits from proactive load balancing. Specifically we
consider the routing scheme based exploiting knowledge of
the residual energy reserve at each node, i.e., routing with
state information. We use Bellman-Ford algorithm for the
minimum cost routing, where the cost is a decreasing function
of the fraction of the residual energy to its full capacity. In
this way, a route with relaying nodes having relatively high
H energy reserves will be preferred even if that route involves a
higher number of hops. Specifically, if the residual energy of
ith node isb;(t) at timet, the cost of routing traffic to that
node is (b;(t)/bmaz)~Y Where~ is some positive constant
and b,,q, IS the maximum energy reserve at a node. As for
the choice ofy, a related study [14] shows that a value within
‘ ‘ ‘ the range 0f0.5 ~ 2.5 is preferable. We have chosen= 1.
10 15 Vo Ener;}gResewe (un2it55) 30 Also, we have assumed that the_: routes do not_change once
created. Of course, one can think of a scenario where the

Fig. 12. Energy depletion probability for the dynamic spreading scherﬁQUtes are Updated' adapting to changes in energy reserves of

10 ¢

-2

10 "k

Probability of Depletion

-8 w=1, y=13.0 0=6.5
10 7| -©~ w=3, uy=13.7 6=5.0
-A- w=5, u=15.2 0=4.5
-9~ adaptive, p=13.6 0=4.5

adjusted to session load and hop length. the neighboring nodes. We exclude such functionality, since
the scheme can suffer from a severe scalability problem due
10° to the large number of the nodes.

In our simulations, we define a level-residual routing to
be such that, tha) best disjoint routes are chosen and flow is
spread as done earlier. Fig. 13 shows one of such comparison.
107t E We see that spreading reduces the tail probability and there are
tradeoff points around: = 15. Although the performance of
state-dependent routing schemes are sensitive to the variability
of traffic, we see that combining a proactive spreading scheme
107°F d can reduce such sensitivity.

Probability of exceeding x

IX. CONCLUSION AND FUTURE WORK

— shortest residual, p=8.4, 0=6.5
-©- residual level 3, u=8.9, 6=5.7
10 7| A~ residual level 5, p=9.3, 0=4.8

) In this paper we propose a simple model for the spatial
g distribution of energy burdens in a multihop ad hoc wireless
network. Our primary contribution is to use these models

I I A

5 10 15 20 25 to investigate the design and potential benefits of proactive

X (energy level) energy balancing multi-path routing schemes. To do so we

Fig. 13. Comparison of the shortest residual routing, the level-3 and tHeevelc,)p a S|mple second order approximation permitting one to
level-5 residual routing. Investigate tradeoffs of several types, e.g., for ad-hoc networks

with or without replenishing and with energy storage capabil-
ities. The essential tradeoff is between the mean and variance
meanand less variance in the energy expenditure (se@nd of a spatial energy (flow) balancing scheme. For our proposed
o in the legends) with the largest spreading factoe- 5. models one might attempt to identify Pareto optimal energy
3) Adaptive spreading: Can we dynamically assign balancing strategies, e.g., one minimizing the variance subject
‘proper’ spreading factor for sessions with different rangde a mean energy constraint, or conversely one minimizing
(distance between source and destination) and loads? Inte mean energy burden subject to a variance constraint. To
itively, for a session with longer range and larger load, org@mplify matters we consider flow/energy balancing on regular
should spread more. Let us denote the range and loadgod model for a simple parameterized family of spreading
a session, possibly random, dsand D. In fact, we find schemes. This permits us to concretely evaluate how this
that the optimally assigned spreading factor is approximatehadeoff should be optimized for the various network types
proportional to\/LD irrespective of the distributions of. and possible design criteria. The results are insightful but
and D. (see [8]). Fig. 12 shows the simulation results of sugberhaps not unexpected. For networks with increased energy
an adaptive spreading scheme. Here each session carries statage and/or replenishing capabilities it pays to be more
exponentially distributed load of mean 1. As shown in thaggressive in spreading traffic so as to reduce the variance
figure, the adaptive scheme provides the superior performartehe energy burden since the additional energy burden can
over the schemes with the fixed spreading factors. be smoothed by energy reserves or new energy sources — one
4) Routing based on residual energy reservétere we must however ensure that the energy burden does not exceed
consider a different class of routing schemes and study htie replenishing capability. For the most part our simulations



confirm our analytical results and permitted us to evaluated the equality is achieved whep; = ﬁ
more general regimes of interest. For (22), it can be shown that the minimization is achieved
We note however that the traffic patterns and netwotky setting alle; ; equal toL due to the constraint (14). We
geometry used in our simulations are fairly benign in thagfer the reader to [8] for the proof.

they are fairly homogeneous in time and space. In practice,

one would expect to see irregular topologies and imbalances

and variability in traffic loads. These in turn would lead tdProof of Theorem 3 We have that the energy request arrival

additional variability in the energy burdens on the networlgrocess is Poisson with rate per unit time per unit space.

We expect, that the benefits of proactive load balancing to BaceS; is defined as the energy request in unit time interval,

be more prominent and sensitive to design in the presence%fis stochastically equivalent to the shot-noise procesR?in

the aforementioned fluctuations. The degree of spreading, evgth intensity A\. From Lemma 1, thei-th order cumulant of

w, might advantageously be exploited to adaptively smoo#) is x(™ (1), thus we have that

out such spatial variabilities and achieve improved balancing oo "

of energy burdens coupled with improved performance on (b ZX i )‘ZE[/ h(x,@o)”dx]e—'

network lifetime. P n
Finally we note that our focus here has been on a pre-

liminary analysis of proactive energy balancing. As such we = A\E| Z h(z, )" dx]

have used a simplified energy model, appropriate to study ®o =1

a routing scheme. Yet overheads associated with setting up = \E| {eeh(x@o) — 1}da).

multi-path routes, or other sources of energy expenditure or ®

savings, e.g., putting nodes to sleep, will play a role. For u
example, in our model we have for the most part ignored
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