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Abstract— In this paper we investigate the use of proactive
multipath routing to achieve energy efficient operation of ad hoc
wireless networks. The focus is on optimizing trade-offs between
the energy cost of spreading traffic and the improved spatial
balance of energy burdens. We first propose a simple scheme
for multipath routing based on node proximity. Then combining
stochastic geometric and queuing models we develop a continuum
model for such networks, permitting consideration of different
types of designs, i.e., with and without energy replenishing
and storage capabilities. We propose a parameterized family
of energy balancing strategies for grids and approximate the
spatial distributions of energy burdens based on their associated
second order statistics. Our analysis and simulations show the
fundamental importance of the tradeoff explored in this paper,
and how its optimization depends on the relative values of the
energy reserves/storage, replenishing rates, and network load
characteristics. Simulation results show that proactive multipath
routing decreases the probability of energy depletion by orders
of magnitude versus that of shortest path routing scheme when
the initial energy reserve is high.

I. I NTRODUCTION

Energy efficient design and operation of ad hoc multi-
hop wireless networks is a particularly critical and difficult
problem. These problems are heightened in the context of
mobile communications systems and/or distributed sensing ap-
plications, where energy storage and availability may be quite
limited. There are many levels at which one can address this
problem. Advances in silicon technology can realize energy
savings through power efficient circuitry, e.g., voltage scaling,
while specialized architectures can be devised to allow nodes
to enter the ‘sleep mode’. At the same time power control and
optimized MAC protocols can bring substantial energy savings
enabling networks with thousands of sensors. Particularly, in
large ad hoc wireless networks the data originated from a
source might need to be relayed along distanceto a destination
or sink wireline node. Relaying through many hops causes
intermediate nodes to consume substantial amounts of energy
and thus make energy efficient routing a particularly critical
task.

Consider the network shown in Fig. 1. Two sourcesS1, S2
send to destinationsD1, D2 on opposite ends of the network
respectively. In the network on the left these sessions are
supported along shortest hop routes. If one of these sessions
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Fig. 1. Comparison of the shortest path routing scheme (on the left) and
a typical load-balancing scheme (on the right). The dotted arrows represent
flows for S1 − D1 and the dashed arrows represent flows forS2 − D2,
respectively.

were sustained for a long time nodes along the route would
eventually see depleted energy reserves, roughly ‘dividing’
the network into two parts. Subsequently if other nodes need
to communicate across this depleted zone they may result in
exhaustion of energy along the diagonal, or require selection
of routes around this area of the network, which in turn
would incur additional energy burdens. This simple example,
shows how energy depletion along long routes combined
with interactions with future overlapping and/or routing of
additional traffic flows might exacerbate the energy problem.
A natural solution to this problem is to spread out the energy
burden of sustained sessions so as to obtain a more spatially
balanced energy burden. Specifically, one may split traffic
across two disjoint routes as shown on the right in Fig. 1.
Assuming energy consumption is roughly proportional to the
load this leads to a more balanced energy burden across sets of
intermediate nodes. At the same time this scheme may involve
a larger number of nodes, e.g., a route with four versus three
hops, and thus an increased overall energy burden.

In this paper, we consider the system design aspects of such
multipath routing strategies associated with a large number
of hops – we refer to this asproactive balancing of energy
burdens over multiple routes. Our primary interest here is not
to devise detailed multi-path routing algorithms, but rather to
investigate the design and possible improvements afforded by
such routing mechanisms. The key intuition is that the more we
spread the traffic, the more the energy profile of the network



will be balanced. However, a wide spreading will require some
packets take long ‘detours’, which will incur extra energy cost.
This tradeoff associated with the degree of spreading is the
main topic addressed in this paper.

The paper is organized as follows. In Section II we discuss
related work in this area. Section III introduces a concrete
multipath routing and balancing strategy, and presents contin-
uum and grid models. In Section IV we characterize spatial
energy burdens using a shot-noise process associated with our
continuum model. Section V considers a regular grid network,
and presents an analysis of a parameterized family of energy
balancing strategies. In Sections VI and VII we formulate
and investigate the design and optimization of such spreading
using second order and asymptotic approximations. Section
VIII includes simulation results and a discussion of complex
scenarios. Finally Section IX presents our conclusion.

II. RELATED WORK

There has been substantial research on analyzing, designing
and implementing energy conserving routing protocols suitable
for ad hoc networking applications. Let us highlight a few of
these. In [1] a characterization and algorithm determining the
most energy efficient route between two nodes is proposed.
However, it is not clear whether using such routes extends
‘network lifetime,’ nor how this would impact network ca-
pacity for non-homogenous traffic loads. By contrast, [2] and
[3] propose and evaluate routing mechanisms to maximize
network lifetime based on nodes’ current residual energy
reserves. Unfortunately, scalability and the effectiveness of
greedy routing to spread energy burdens are a concern. The
work of [4] takes yet another tack – they propose packet-level
randomized routing in order to proactively balance energy
burdens across the network. A unifying principle emerges
from this body of work: the tradeoff between minimizing the
energy expended to carry an offered load versus the balancing
of energy burdens across the network. To the best of our
knowledge, the spatial character of this tradeoff has not been
studied. The primary contribution of our work is the use of
a stochastic geometric framework to analyze, and then work
towards realizing this tradeoff in an ‘optimal’ manner.

III. SPATIAL MODELLING

This section is divided into three parts. We start by stating
our model assumptions. Then we introduce a simple multi-path
routing scheme based on spatial relationships among nodes.
Next, we propose a continuum model where we regard the
field of the wireless nodes as the infinitesimal ‘medium’ that
carries fluid, i.e., the traffic flow. This leads to a simple shot-
noise process model for the spatial field of energy expenditures
which is amenable to analysis.

A. Model assumptions

In this paper we will use a simplified model for energy
expenditures associated with data transmissions. Nodes are
assumed to share a common transmit power level more than
sufficient to guarantee the network is connected. Nodes relay
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Fig. 2. Illustration of regionsR0(S, D) and R1(S, D) for the source-
destination pair(S, D).

packets towards the destination vianeighboringnodes in a
hop-by-hop manner. We assume that the energy consumption
at each node is proportional to the traffic it is carrying, and use
the terms ‘traffic load’ and ‘energy burden’ interchangeably.

The hop length between every source-destination pair is
assumed to be high, i.e., we focus on the spatial energy burden
resulting from long routes. In this study we do not explicitly
consider energy consumption caused by channel contention.
We assume that the network is lightly loaded and transmissions
are properly scheduled so that the energy consumption caused
by interference and contention is negligible. This simplifies our
discussion. The role of the energy burden caused by channel
interference and contention is to be included in the future
work.

An example which fits our assumptions is an energy-
constrained large-scale sensor network with light traffic. Pack-
ets generated at a sensor may have to take a large number of
hops in order to be delivered to other locations in the network.

Since traffic generated by a node is assumed to be relayed
only to its neighbors, the term ‘neighbor’ needs to be defined
precisely. A reasonable choice of neighbors is one based
on proximity. We shall model the locations of the nodes as
fixed and following a spatial point process inR2 plane. A
natural notion of proximity and neighbor relationship can be
introduced via the Voronoi tessellation and Delaunay graphs
induced by the locations of the nodes. These are discussed
below.

Suppose the locations of the nodes constitute a point process
Ψ on theR2 plane . Each pointxi ∈ Ψ serves asseedfor a
cell V (xi),

V (xi) = {y | |xi − y| ≤ |xj − y|, ∀xj ∈ Ψ}
in the Voronoi tessellation induced byΨ. If V (xi)∩V (xj) is
not an empty set, we refer toV (xi) andV (xj) asneighboring
cells and we say thatxi andxj are neighbors.

A Delaunay graphis a graph whose vertex set isΨ and
whose edges connect nodes that are neighbors. We denote the
Delaunay graph asG(Ψ, E) whereE is the set of Delaunay
edges. Routes considered in the discussion below will be based
on the Delaunay graph and they will be referred to as Delaunay



Fig. 3. The figure shows the construction of level 1,2 and 3 routes for nodesS andD, from left to right. The route at each stage is shown with solid lines
and the shaded regions are the cells for the nodes in routes. The nodes marked by an arrow are theconnectorsat each route.

routes. We shall assume that the spatial distribution of nodes
is fairly uniform and sufficiently dense such that each node
can reach its neighbors.

B. A multi-path routing scheme based on the Delaunay graph

Consider a Delaunay route connecting two nodesxi, xj ∈
Ψ, and has a minimal length, i.e., sum of the Euclidean length
of its edges. This path is referred to as theShortest Delaunay
Route(SDR) and its length is a good approximation for the
straight line segment that connectsxi andxj , see e.g., [5], [6].
Note that the SDR is based on the Euclidean norm, thus the
SDR may not coincide with the minimum hop route. We will
see in the sequel (Section VIII) that this small difference may
impact thedistribution of energy expenditures significantly.

Based on the SDR, we propose the following simple con-
struction to determine a set of additional paths between two
nodes, sayS,D ∈ Ψ. For purposes of visualizing its spatial
characteristics we present a geometric view of this construction
:

1) Draw a straight line segmentd(S, D) betweenS and
D, and draw two additional lines, throughS and D
and orthogonal tod(S,D). Let R0(S, D) andR1(S, D)
denote the open sets above and below the line segment
d(S, D), see Fig. 2.

2) We letN1(S, D) denote the set of nodes included in the
SDR fromS to D, and refer to this route as the Level 1
route.S andD are referred to as theLevel-1 connectors.

3) Now find the set of nodesN2(S, D) which are neighbors
of N1(S, D) and fall in R0(S, D). Create a route that
connects the nodes inN2(S, D) with Delaunay edges.
We refer to the two nodes located at each end of this
route asLevel-2 connectors.

4) Construct a SDR for a Level-2 connector to its closest
Level-1 connector and repeat the same for the other con-
nector. if this SDR crosses new nodes, updateN2(S, D)
by adding these new nodes inN2(S, D). Now the nodes
in N2(S, D), S andD can be connected via a Delaunay
route which is referred to asLevel-2 route.

5) Next determine the set of nodesN3(S, D) which are
neighbors ofN1(S, D) but falls in R1(S, D) this time.
Following a similar process as above, find the Level-3

connectors, updateN3(S,D) and construct the Level-3
route.

6) For w ≥ 4, determine the new set of nodesNw(S, D)
that are neighbors ofNw−2 and fall inR(w mod 2). Fol-
lowing the above steps, the Level-w route is recursively
constructed.

The basic idea is to recursively construct higher level routes
based on nodes which are neighbors of those included in pre-
vious levels but alternating betweenR0(S, D) andR1(S, D)
in order to balance spreading cost as the levels increase.
These routes can be obtained based on a distributed routing
scheme since the only information required is the location of
neighboring nodes, the source and the destination. We confine
relaying nodes to the regionsR0(S, D) andR1(S, D) so as to
prevent routes that extend backward. As will be clear from the
construction, the role of connectors is to ensure connectivity
via Delaunay routes amongS, D and different levels of routes.

An example of our route construction for a source-
destination pair(S, D) is illustrated in Fig. 3. At each level,
the level connectors are marked with arrows. In the third step,
the Level-3 connector andD was not directly reachable via a
Delaunay edge (dotted line), thus a SDR between those two
nodes is constructed to connect them.

We shall refer to this construction as proximity-based mul-
tipath (PBM) routing which gives us a concrete set of paths
over which to distribute traffic so as to spread out energy
burdens. An approximate model for the multi-path routes by
this construction will be considered in Section V.

C. Regular grid and continuum models

As shown in Fig. 3, our multiple routes are spatially
clustered. We shall refer to such clusters as thespatial footprint
of a multipath routing scheme. In order to study the interaction
among such footprints given a traffic load, and in particular
the spatial energy burdens they induce on the network, we
adopt two idealized models.

First, consider a PBM construction in a denseregular grid
networkwith each grid dimension is1 × 1. The left part of
Fig. 4 shows an example of such a construction for several
SD pairs. A source transmits a sequence of packets to its
destination for some amount of time, and we refer to this
process as asession. Suppose sessions ‘arrive’ to and ‘depart’



Fig. 4. On the left, the footprints are approximated and adjusted to the grid structure so that the footprints have the regular shape and the topology along
the grids. The figure on the right shows the hypothetical square-shaped random sets cast upon the regular grid network.

from the network. Upon departure, each session has depleted,
by possibly different amounts, the energy reserves of locations
(nodes) traversed by its paths – the session’s support set or the
spatial footprint.

We take a slightly different view of this process. For each
node that participates a session, we draw a square or paral-
lelepiped ‘cell’ of unit area centered at the node depending on
the spatial orientation of the session. By merging these cells,
we obtain a shaded polygon for each session as on the left of
Fig. 4. We assume that the initiation of a session corresponds
to the ‘arrival’ of a polygon into the network and the nodes
that fall inside the polygon participate in that session. These
nodes comprise the footprint of the session.

Next, we associate each polygon to a random closed set in
R2, e.g., a randomly oriented square as on the right part of
Fig. 4. These session arrivals correspond to ‘arrivals’ of these
random sets, e.g., a square on the right of Fig. 4 ‘generates’ a
session footprint. Note that the footprint generation process is
now reversed, i.e., we assume that there area priori arrivals of
random sets in a plane and we ‘tailor’ each shape to a regular
grid structure as an approximation. A possible tailoring of such
shape is given by the following procedure.

1) Find the end tip locations of each random square and
find the nearest nodes to those points in the grid, mark
the nodes as the SD pairs.

2) Draw a regular or parallelepiped square of size 1 around
each node such that the node is at the center of each
square. Appropriately choose the shape of each square
according to the orientation of each footprint: a heuristic
example is on the right of Fig. 4.

3) Merge the squares to form footprints around each SD
pairs as on the right of Fig. 4.

A careful comparison of the examples in Fig. 4 should give
the idea.

For purposes of modelling the dynamic spatial behaviors
of these random sets, we assume that thegeometric center
of massof each random set ‘falls’ into aR2 plane whose
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Fig. 5. A realization of the energy footprints for sessions in ad hoc network.
A footprint is assumed to have elliptical shape for the purpose of illustration.

collection constitutes a spatial-temporal point process. As an
example, see the right of Fig. 4 where the black dots represent
the center of masses for various footprints.

Next we introduce a continuum model. Consider the limiting
process of the above construction such that the density of the
nodes becomes very large. We can think of an infinitesimal
area in space as corresponding to a node with some initial
energy reserves. Fig. 5 exhibits a realization of the process
capturing the energy burdens incurred over a period of time
– only sessions’ footprints are shown. As shown in Fig. 5,
every footprint is assumed to have some well-defined, possibly
random,continuumshape. Here the footprint itself plays the
same role as the random sets in the previous grid model.
The source and destination nodes are located at each end
of the footprints. Here we denote the ‘length’ of a footprint
which corresponds to the distance between a SD pair asl, and
the maximum ‘width’ of a footprint which is related to the
spreading factorasw.

Each location within a footprint corresponds to a in-
finitesimal node which may experience different amount of



load/energy burden. Since the footprint is a random closed set
in R2, we shall define aload distribution function that maps
a point in the footprint to the relative load intensity it sees.
Essentially such load distribution function depends on (1) a
particular strategy of ‘spreading’ traffic within a footprint, (2)
the degree of spreading,w and (3) the connection lengthl.
We will characterize the relevance of these parameters to the
energy burden profile in a network in the rest of this paper.
Let us assume that every SD pair carry the same amount of
traffic. Intuitively, the footprints associated with a largerw
and the samel occupy more area, but the energy load per unit
area would be lessened – this will be further quantified in the
following sections.

As this model suggests, it is natural to introduce ashot-
noise processin R2. Footprints are associated with a point
process corresponding to the collection of centers of masses,
and each footprint contributes to energy burden at certain
location depending on its shape and load distribution function.
Furthermore, if multiple footprints overlap at a location, the
burden at that location is anadditive one contributed by the
overlapping footprints. We will use the shot-noise model to
capture spatial characteristics of the energy burden, and later,
a regular grid model to parameterize such characteristics for
system design purposes.

IV. CHARACTERIZATION BY CONTINUUM MODEL

A. Shot-noise formulation

The continuum model proposed in the previous section can
be mathematically formalized as a shot-noise process. Let
Φ0 denotes a random closed subset ofR2 corresponding to
taking a fixed shape (footprint) with center of mass at the
origin and a random rotation in[0, 2π). We will refer toΦ0 as
the distribution of a typical footprint. The energy burden for
an infinitesimal region (node) falling within the footprint is
modelled as follows. We define theload distributionfunction
h(·, Φ0) : R2 → R+ as giving the energy burden, such that,
for y ∈ R2, if y /∈ Φ0 then h(y, Φ0) = 0 and otherwise
h(y, Φ0) assumes some nonnegative value corresponding to
the energy burden in an infinitesimal spatial area located aty
for a footprintΦ0 centered at the origin.

We assume that the centers of mass of sessions constitute a
spatio-temporal Poisson point processΠ with intensityλ(x, t)
at locationx and at timet. Let us denote byΠt a spatial
point process inR2 for the centers of the sessions/footprints
that have been been offered to the network prior to timet.
Thus Πt has the spatial intensity of

∫ t

0
λ(x, u)du at location

x. Each pointxi ∈ Πt has an associated footprint denoted by
Φi. We assume{Φi} are i.i.d. copies ofΦ0 and are invariant
to shifts inR2 for all xi. Thus the contribution of the energy
burden on locationx from the session atxi with Φi, will
be h(x − xi, Φi). Note since we equivocate load and energy
burden,h(·,Φi) depends on how a routing mechanism chooses
to spread flow of sessioni within its footprint Φi.

Suppose that all the nodes initially have identical energy
reserves at time 0. Then the total energy burden accumulated

at locationx ∈ R2 has a shot-noise representation given by

G(x, t) =
∑

xi∈Πt

h (x− xi, Φi) . (1)

For simplicity, we assume thatΠ is a Poisson process,
homogeneous in time and space with the constant intensityλ
per unit time per unit area. ThenΠt is a homogeneous Poisson
point process with intensityλt. Next we state several known
results from the shot-noise theory. SinceΠt is stationary, we
can consider a typical node as being at the origin to obtain
the following result.

Lemma 1:(See [7].) Let us defineG0(t) := G(O, t), the
energy burden at the origin. Also letχ(n)(t) be thenth order
cumulant ofG0(t). By the homogeneous Poisson property of
Πt, we have that

χ(n)(t) = λt E

[∫

Φ0

h(x, Φ0)ndx

]
.

Define the normalized meanµ and varianceσ2 as:

µ := E

[∫

Φ0

h(x, Φ0)dx

]
, (2)

σ2 := E

[∫

Φ0

h(x, Φ0)2dx

]
. (3)

Then we have that

E[G0(t)] = λtµ,

Var[G0(t)] = λtσ2.

As mentioned earlier, the functionh(·, Φ0) captures both the
‘shape’ and how the flow is spread within a typical footprint.
Thus it is one of the design choices one can make to control
the mean and variance of the energy burdens. Although using
only these two moments to describe the statistical properties
of G0(t) may not be sufficient, the following theorem shows
that it can be a good approximation (see [7]).

Theorem 1:(Asymptotic normality of shot-noise process)
ConsiderG0(t) defined in Lemma 1. We have that

G0(t)− λtµ√
λtσ

d→ N(0, 1) as t →∞

whereN(0, 1) is the standard normal distribution.
From this theorem, we have that, for larget, the probability
of energy burden exceeds a prescribed levelb is given by

P (G0(t) > b) ' φ

(
b− λtµ√

λtσ

)
, (4)

φ(u) :=
1√
2π

∫ ∞

u

e−v2/2dv. (5)

Without loss of generality, let us assumeλ = 1 throughout
the rest of the paper. In order fort to be effectively large, we
need a typical node in the network to see a large number of
footprints that overlap on average. For example, if the typical
footprint has fixed, rectangular shape with its lengthl = 20
and spreading factorw = 5, then a typical point in the field



experiences the overlapping of 100 footprints on average when
t = 1. Thus the distribution of energy burden may be safely
assumed to be roughly normal even for moderate values oft.

B. Depletion probability, network lifetime and variance-
optimal schemes

A common criterion for energy performance of a network
is lifetime, e.g., the time before some fraction of nodes will
be below a certain battery level. Our objective lies in the
complementary question: given adesired network operation
time, how can we minimize the fraction of the depleted nodes?
For example, if one wishes to operate a sensor network for a
week, what fraction of nodes are expected to survive during
a week and what is a proper multi-path routing strategy to
achieve this? We believe this problem is of more practical
interest in engineering such networks. To address the above
question, we shall use the normal approximation in Theorem
1.

Let τ be the desired time for network operation. Then the
fraction of nodes that have not exceeded the critical levelb
during τ is given by

φ

(
b− τµ√

τσ

)
. (6)

Suppose the critical reserve levelb is specified as a multiple
k of τµ which is defined as the mean energy consumption of
thebaselinescheme, i.e., a scheme without multi-path routing.
Thus the critical levelb is specified in terms of a factork times
the mean energy consumption of baseline scheme duringτ .
Thusb = kτµ and let us definezk(τ) as follows.

zk(τ) :=
√

τ
kµ− µ

σ
. (7)

Thus to reduce depletion we wish to maximizezk(τ) for a
given τ , i.e., minimize the probability of depletionφ(zk(τ))
by changingµ andσ.

Eq. (7) provides us with crucial insights. Certainly we would
like to minimize bothµ andσ, however as we will see later
that there is atradeoffbetween these parameters, i.e., we can
decreaseµ at the cost of increasingσ, and vice versa. The
optimal tradeoff will depend onk. If kµ is small, one might
try to decreaseµ. Conversely, ifk is relatively large, one might
prefer strategies that give smallerσ.

In our study we focus on schemes that minimizeσ2, i.e.,
variance-optimal strategies. Thus we assumek is moderately
large, i.e., all the nodes have sufficient energy reserves in the
beginning so that they do not suffer from depletion when
only a few sessions overlap a given location. However, the
significance of such variance optimal strategies does not come
only from such assumption. From (7), we see thatσ has
multiplicativefactor onzk(τ) and in [8] we show that variance
optimal schemes yield values that are very close to the optimal
zk(τ) even for no large values ofk.

Fig. 6. The functionh(·, Φ) whereΦ is the whole square area that contains
the nodes represented by circles andh(·, Φ) takes the continuous values
represented by the heights of the shaded region.

(0,−1)

w
a

b

(i,j)

i,j

i,j

l

(1,0)(0,0)

DS
(0,1)

Fig. 7. Topology of the regular grid footprint. The coordinates of locations
are shown for some nodes in their lower left corners. The source and the
destination is marked byS andD respectively and the dimensions,l andw,
of the grid are shown.

V. PARAMETRIZATION BY GRID MODEL

In this section we revisit the regular grid model proposed
in Section III to study flow distribution that minimizeσ2.
Nodes are assumed to be tiled to form a regular grid where
the spacing among the nodes is 1. To be consistent with
our continuum model,Φ0 represents the typical random set
inducing a footprint, e.g., a square on the right of Fig. 4. The
load distributionh(·,Φ0) is now given as a continuous function
taking values of the allocated rate at each node and assuming
the form of step functions as shown in Fig. 6. In the figure,
the heights represent the values of such rates andh(·,Φ0) is
constant within a grid square where the random setΦ0 is the
whole square area containing the nodes. The integrations in
(2) and (3) can be approximated assummationsof traffic load
at each node. Thus the problem reduces to a flow distribution
on a grid. With these assumptions onh(·, Φ0), we derive the
expressions of (2) and (3) suited for the grid model.

Assume thatΦ0 is a rectangle of dimensionl × w wherel
andw are assumed to be fixed for the present, and has random
rotation uniformly distributed in[0, 2π). In spite of its random
rotation, we assumeΦ0 approximately covers a footprint of



length l grid steps and the maximum width ofw grid steps
by the argument of ‘tailoring’ random sets to grid structure in
Section III.

A footprint is defined as the set of nodes in the grid that
carry nonzero flow, and its shape is shown in Fig. 7. We
assumew is an odd integer to maintain the symmetry, and
that it does not exceedl, which is reasonable since spreading
beyondl is not likely to be useful, which will be shown later.

We introduce some notation. We label each node with an
integer coordinate(i, j) placing the source node at the origin
as shown in Fig. 7. The horizontal flow rate from node(i, j) to
(i+1, j) is denoted byai,j and the vertical flow rate from node
(i, j) to (i, j+1) is denoted bybi,j . We denote the flow or the
energy consumed at node(i, j) by ei,j , i.e.,ei,j := ai,j + bi,j .

Define the setH := {(i, j) | 0 ≤ i ≤ l, |j| ≤ (w − 1)/2}.
Under the above construction, we have that

µ = E[
∫

Φ0

h(x, Φ0)dx] ≈
∑

(i,j)∈H

ei,j , (8)

σ2 = E[
∫

Φ0

h(x, Φ0)2dx] ≈
∑

(i,j)∈H

e2
i,j , (9)

We wish to minimize (9) by properly settingai,j andbi,j for
given w and l.

Suppose that the flows are symmetric with respect toi = l
2

axis andj = 0 axis wherel is assumed to be an even integer
for simplicity. Especially we refer to the axisi = l

2 as the
middle abscissa, abbreviated as MA.

We formally define the variance optimal flow distribution
problem as:

Problem 1:

Minimize:
∑

i,j∈H

e2
i,j =

∑

i,j∈H

(ai,j + bi,j)2. (10)

Constraints:

ai,j + bi,j = ai−1,j + bi,j−1, (11)

a0,0 + b0,0 = 1, (12)

ai,j , bi,j ≥ 0,

al/2,j > 0, for j = ±(w − 1)/2, (13)

Variables:ai,j , bi,j .

where (11) corresponds to the flow conservation at each node,
(12) the source emitting 1 unit of flow, and (13) the definition
of a footprint.
In addition to flow conservation, note the (11) also assumes
that the flow routed for the nodes to the left of MA moves away
from the source, and at the nodes to the right of MA towards
the destination. This ensures that traffic does not flow in an
inefficient manner where energy is wasted without reducing
variance. Constraint (13) comes from the specification of the
width w of the footprint, i.e., the maximum width that the
nonzero amount of flow can be spread over.

Standard optimization techniques such as the projected gra-
dient method [9] can be applied to solve Problem 1. However
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Fig. 8. The optimal flow allocation whenw = 5 and l = 7.

we will simplify the problem by adding an extra constraint of

al/2,k =
1
w

, (|k| ≤ (w − 1)/2), (14)

i.e., the flow rates are equal along the MA. Our rationale
is that, first, this yields a closed-form, simple and intuitive
solution. Second, it gives a good approximation especially for
large values ofl. In [8], we show that the solution obtained
for the suboptimal scheme converges to the optimal solution
when l is large.

For the modified problem, the solution can be obtained by
exploiting the convex characteristic of the objective. Also note
that it suffices to specifyei,j as the solution, since it can be
shown that by solvingei,j and the constraints, we can obtain
ai,j andbi,j for all (i, j).

Lemma 2:The solution to Problem 1 with the additional
constraint (14) is, for all(i, j) ∈ H,

ei,j =




{2(|i|+ |j|) + 1}−1, |i|+ |j| ≤ w−1

2 ,
{2(|l − i|+ |j|) + 1}−1, |l − i|+ |j| ≤ w−1

2 ,
w−1, otherwise.

Proof: See appendix.
An example of such a flow assignment is illustrated in

Fig. 8. The dotted lines are contours that represent level sets
of nodes which have the same total flow. The value of the
levels decreases harmonically, i.e.,(1, 1

3 , 1
5 , . . .) as the contour

expands outward from the source. Allai,j andbi,j are specified
in the figure.

For this flow assignment, we have that

µ ≈
∑

(i,j)∈H

ei,j = l +
w

2
− 1

2w
, (15)

σ2 ≈
∑

(i,j)∈H

e2
i,j =

l

w
− 1

2

(
1 +

1
w2

)
+
bw+1

2 c∑

k=1

2
2k − 1

.

(16)

The following observations are in order. For1 ≤ w ≤ l,
we see thatµ increases withw, i.e., the mean energy in-
creases with the spreading width, since the flow travels longer
distances. However,σ decreases withw, i.e., the variance
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Fig. 9. A numerical evaluation of optimal design of spreading parameter by
the regular grid spreading strategy discussed in Section V. The hop lengthl
is fixed to 20 and the initial energy reserve parameterk is varied. Note the
change in the tradeoff points marked by arrows, i.e, the optimalw moves
from 3 to 5 with increasingk.

decreases with the degree of spreading. Thus one cannot
minimize the mean and the variance simultaneously. Also ifw
is large such that it is comparable tol, the cost of spreading
will reduce the benefits of spreading.

The interesting case is wherel is much larger thanw.
Clearly, the mean energy is roughly invariant for small changes
in w, but the variance is sensitive tow – the dominant term
l
w . Thus for a load that traverses a long route, the benefit from
spreading is large. For detailed discussion, we refer the readers
to [8].

VI. D ESIGN TRADEOFFS: NETWORKS WITHOUTENERGY

REPLENISHINGCAPABILITY

A. Depletion probability of the typical node

In this section we numerically evaluate the depletion prob-
ability of the typical node, combining the estimates (15) and
(16) with zk(τ). Here τ is assumed to be 1 andl is set to
20. Fig. 9 exhibits a plot ofφ(zk(τ)) for varying k, i.e.,
varying the initial energy reserve of the network versus the
spreading factorw. Clearly, there existsw that minimizes
the depletion probability for eachk: see the points marked
by arrows. As expected, for the case where nodes have more
initial energy reserves, we should use a largerw. The intuition
is that, whenever the nodes in the network have large residual
reserves, they should cooperate to balance load on the network,
i.e., increase the nodes participating in carrying a flow, but up
to certain degree the load balancing itself does not overload
the network.

B. Depletion probability of the maximum burden node

As a consequence of the previous normality result, we
can also approximate the spatial energy burden pattern as a
stationary, isotropic Gaussian random field inR2. Consider
G(x, t) in (1) for x ∈ R2. We assume the whole network

occupies a regionA ⊂ R2. Consider the probability that the
node with the highest energy burden exceeds the prescribed
level b, i.e.,

P (sup
x∈A

G(x, t) > b). (17)

We can estimate the asymptotic value of this probability as
b → ∞ via extreme value theory for homogeneous Gaussian
fields, e.g., [10], [11]. Denote the desired network operation
time by τ as before, and consider the normalized energy
burdenZ(x, t) := (G(x, t) − tµ)/

√
tσ whereλ = 1. Let us

assume that atτ , we have a spatial covariance functionrτ (y),
i.e., rτ (y) = E[Z(x + y, τ)Z(x, τ)] for somey. Since the
field is isotropic, this function depends only on the norm of
y, denoted by|y|. Suppose that the following holds for some
positive constanta, and fory with very small|y|.

rτ (y) ≈ 1− a|y|α , as |y| → 0.

Here α denotes the infinitesimal order of decay of the co-
variance with the distance|y|. Again assume thatb is given
by kµτ wherek is large, then based on the Poisson clumping
heuristic [11], we can rewrite and approximate (17) as follows.

P (sup
x∈A

Z(x, τ) > zk(τ))

≈ Hα|A|a2/α{zk(τ)}4/αφ(zk(τ)) (18)

where |A| is the area of the regionA and Hα > 0 is the
2-dimensional Pickand’s constant which depends only onα.
We see that the depletion probability is proportional to the
physical area of the network, and is related to the covariance
structure of the footprints. Comparing with the analysis for
typical node case, we have the common termφ(zk(τ)), but
there is the extra term{zk(τ)}4/α which gives an additional
penalty whenzk(τ) is large.

Thus we expect that, by increasingw, the overall rate of
decay in covariance will decrease and one will observe a
similar tradeoff as seen earlier in Fig. 9, but the curve will
be flatter due to the penalty term. This has been verified by
using numerical evaluation along with estimation ofa, α and
zk(τ). For details we refer the reader to [8].

VII. D ESIGN TRADEOFFS: NETWORKS WITH ENERGY

REPLENISHINGCAPABILITY

Next we consider the case where nodes have capability
of replenishing their energy at constant rate ofc units per
unit time. The energy storage capacity of each node isb.
We model the energy level of a node by a queue where
arrivals correspond to energy burdens which are served, i.e.,
replenished at ratec. Note that the dynamics of the queue and
their physical interpretations are reversed: ‘filling’ the queue
with energy burden corresponds to ‘consuming’ its energy
reserves. Thus, we are interested in the likelihood that the
queue length exceeds the levelb. We consider two regimes as
follows.



A. Nodes with small initial energy reserves

Suppose first the initial energy reserve is small relative
to the typical energy expenditure of a node. Thus we might
conservatively study the case where the reserve at any point
in time is virtually zero. Consequently, it is necessary that
the instantaneous cumulative energy burden on a typical node
does not exceed therate of replenishing. Thus we estimate
the probability that an excessive instantaneous energy burden
is seen at a typical node. The spatial energy burden per unit
time is simply a shot noise process with the spatial density of
λ. Thus a design goal would be, for given threshold probability
δ and at typical locationx, that

P (
∑

xi∈Π1

h(x− xi, Φi) > c) < δ (19)

which can be estimated by using Chernoff bound combined
with (15) and (16). We leave this to consider the more
interesting case where nodes can store and replenish their
energy reserves.

B. Nodes with large initial energy reserve and small replen-
ishing rate

In this regime the energy replenishing rate of a node is much
smaller than the rate of consumption, but nodes have large
energy storages. Consider a typical node covered by multiple
session footprints. The energy load requests for each footprint
is buffered into the node’s energy queue which is replenished
at rate c. An energy request fills the queue, i.e., consumes
energy at a constant rate. This can be modelled by using a
continuous load model such as fluid queues, e.g., see [12].
However, since the energy consuming rate is assumed to be
much greater than the replenishing rate, we can assume that
energy burdens are offeredinstantaneouslyto nodes. Also the
offered load at the typical node depends only on its location
within the footprints that ‘hit’ the location. Furthermore,
footprint arrival process is assumed to be a homogeneous
Poisson process in time and space. Thus anM/GI/1 queue
can be used as an approximate model.

In this regime, we intend to find theasymptotic decay rate
of the queue content which is an indicator of the probability
that the energy burdens exceed a large initial energy reserve
of b. For a stable, single-server queue, we denote the steady-
state workload byW . If the following condition is satisfied
for someθ∗ > 0:

b−1log{P (W > b)} b→∞→ −θ∗,

then we refer toθ∗ as the asymptotic decay rate [13]. We
use the results in [13] to describe the behavior of the tail
probabilities.

Let us define the problem. The amount of energy requests
are assumed to be i.i.d. but its distribution is not heavy-tailed
since every footprint is assumed to occupy a finite area. We
denote the virtual workload for the energy queue at time slot
(i, i + 1] for i ∈ Z asWi . Then we have that

Wi+1 = max[Wi + Xi+1, 0] = sup[Wi + Xi+1]+,

whereXi = Si − c andSi is the total energy burden per unit
time slot, andc is the replenished energy per time slot. These
dynamics correspond to a Lindley process, and sinceXi are
i.i.d., we can readily apply the following results on the decay
rate function.

Theorem 2:[13] Let us assume{Wi} is stationary and thus
stable under conditionE[Xi] < 0, i.e.,E[Si]−c < 0. If {Xi}
are i.i.d., thenθ∗ satisfies

ρ(θ∗) = 0,
d

dθ
ρ(θ∗) > 0

whereρ(θ) = logE[eθXi ].
We can readily obtain the required cumulant generating

function as follows.
Theorem 3: The cumulant generating functionC(θ) of Si

is given by

C(θ) = logE[eθSi ] = λE[
∫

Φ0

{eθh(x,Φ0) − 1}dx].

Hence we have the rate decay functionρ(θ) is given by

ρ(θ) = λE[
∫

Φ0

{eθh(x,Φ0) − 1}dx]− cθ

under the stability condition

λE[
∫

Φ0

h(x, Φ0)dx] < c. (20)

Proof: See appendix.
The stability condition relates the replenishing ratec, and

the rate of new requests per unit area,λ, times the average total
energy request within a footprint. The rootθ∗ of ρ(θ) = 0 may
be found numerically. Using expressions (15) and (16) and
the regular grid approximation, some decay rates with varying
spreading factors are given in Table I. Herel = 8 andλ = 1,
and let us denote the critical replenishing rate to satisfy the
stability condition whenw = 7 asc∗. The replenishing ratec
is set toβc∗ whereβ = 1.2 and2.0.

Again we observe the tradeoffs associated with different
rates of replenishing. Whenβ = 1.2, the optimal spreading
factor is 3. Meanwhile, with a higher replenishing rate ofβ =
2.0, the optimalw is increased to 5. The intuition here is that,
with higher replenishing rates, one can spread traffic further to
enjoy the spatial balancing effect. However, if the replenishing
rate decreases close to the critical value, the mean energy cost
to spread is no longer negligible so that smaller spreading
factor is preferred.

TABLE I

DECAY RATES WITH VARYING SPREADING FACTORS

Spreading factor Decay rateθ∗
w β = 1.2 β = 2.0
1 0.8673 1.7125
3 1.2506 2.7080
5 1.0965 2.7593
7 0.7965 2.6831
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Fig. 10. Energy depletion probability for nodes without energy replenishing
capability.µ andσ represents the mean and the standard variation of energy
expenditure of each scheme.

VIII. S IMULATIONS

A. Basic setup

In this section we simulate several scenarios to further
explore the benefits of proactive spreading. We will deal with
stateless routing schemes, however we extend the idea of
proactive spreading to routing schemes with states, e.g., a
routing depending on nodes’ residual energy reserves. The
performance metric is evaluated given a maximum energy
reserve (MER), what would be the probability that a randomly
selected node is depleted of its energy reserve. This metric is of
fundamental importance in an engineering perspective, since
for a given network operation time and a MER, we may wish
to find out the probability of a typical node having depleted
of its reserves, or equivalently, the fraction of depleted nodes
in the network.

An average of 400 node locations are generated on a 20×20
unit square according to a homogeneous Poisson point process
with intensity 1. Session arrivals are homogeneous in space,
and a total of 200 sessions are offered at each simulation. Each
session offers 1 unit of load per unit time with a (random)
holding time of 1 unit time (on average). We simulate session
arrivals by picking two nodes at random, which are given by
source-destination pair and then setting up a unidirectional
flow. We have used PBM route construction introduced in
Section III, and the flow is equally divided to each path in
order to approximate the scheme in Section V. Note that in our
simulation, the ‘shortest path routing’ (SPR) is a routing that
takes the minimum number of hops on the Delaunay graph of
nodes. This must be distinguished from the shortest Delaunay
routing (SDR) which is a PBM routing without spreading, or
equivalently, with the spreading factorw of 1.

B. Scenarios

1) Nodes without replenishing capability:Fig. 10 shows
the average energy depletion probability for several values
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Fig. 11. Energy depletion probability for nodes with energy replenishing
capability.

of the spreading factorw along with the shortest routing
scheme. A point(x, y) in this plot is interpreted as follows:
‘the probability that the energy expenditure of a typical node
will exceedx is y’. If x is the MER,y is the probability that
a typical node is depleted.

Let us consider only proactive routing first. When the MER
is less than roughly 20 units, routing with a minimal spreading
factor (w = 1) performs best. However, as the MER increases
to more than 25 units, proactive multipath routing with the
largest spreading factor(w = 5) outperforms the others. These
results are consistent with previous discussions, since if we
have the high MER we prefer a scheme with a lower variance
in the energy expenditure(w = 5) at the cost of higher mean
energy expenditure, and vice versa. These tradeoffs occur
when the maximum reserve is between 20 and 25 units in our
simulation. The SPR has a lowest mean energy expenditure
but with the highest variance, and suffers from the worst
performance in ‘tail behavior’, i.e., the lowest slope in the
decay for the probability of depletion with the MER. Also
note that it has different performance as compared to the SDR
(w = 1) case: the SDR performs better due to its steeper
slope in the tail probability. We verified that, for SDR, the
shape of the empirical histogram of energy burden indeed
resembles the Gaussian p.d.f., meanwhile for the SPR we see
a monotonically decreasing shape with a heavy tail [8].

2) Nodes with replenishing capability:Fig. 11 shows the
energy depletion probabilities when the nodes have the capa-
bility of replenishing their energy reserves. Here each connec-
tion arrives to the network with interarrival time is randomly
distributed in[0, 1] time unit and has replenishing rate of 0.125
energy units per unit time. The benefit from the proactive
spreading is greater than that seen for the non-replenishing
case. The intuition here is that, for largerw, the average
number of nodes that participate in a session is greater than
that of a scheme with lessw. Thus more nodes have a chance
to replenish their energy reserves, which results in a reduced
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Fig. 13. Comparison of the shortest residual routing, the level-3 and the
level-5 residual routing.

meanand less variance in the energy expenditure (seeµ and
σ in the legends) with the largest spreading factor,w = 5.

3) Adaptive spreading: Can we dynamically assign
‘proper’ spreading factor for sessions with different ranges
(distance between source and destination) and loads? Intu-
itively, for a session with longer range and larger load, one
should spread more. Let us denote the range and load of
a session, possibly random, asL and D. In fact, we find
that the optimally assigned spreading factor is approximately
proportional to

√
LD irrespective of the distributions ofL

andD. (see [8]). Fig. 12 shows the simulation results of such
an adaptive spreading scheme. Here each session carries i.i.d.
exponentially distributed load of mean 1. As shown in the
figure, the adaptive scheme provides the superior performance
over the schemes with the fixed spreading factors.

4) Routing based on residual energy reserves:Here we
consider a different class of routing schemes and study how

it benefits from proactive load balancing. Specifically we
consider the routing scheme based exploiting knowledge of
the residual energy reserve at each node, i.e., routing with
state information. We use Bellman-Ford algorithm for the
minimum cost routing, where the cost is a decreasing function
of the fraction of the residual energy to its full capacity. In
this way, a route with relaying nodes having relatively high
energy reserves will be preferred even if that route involves a
higher number of hops. Specifically, if the residual energy of
ith node isbi(t) at time t, the cost of routing traffic to that
node is (bi(t)/bmax)−γ where γ is some positive constant
and bmax is the maximum energy reserve at a node. As for
the choice ofγ, a related study [14] shows that a value within
the range of0.5 ∼ 2.5 is preferable. We have chosenγ = 1.
Also, we have assumed that the routes do not change once
created. Of course, one can think of a scenario where the
routes are updated, adapting to changes in energy reserves of
the neighboring nodes. We exclude such functionality, since
the scheme can suffer from a severe scalability problem due
to the large number of the nodes.

In our simulations, we define a level-w residual routing to
be such that, thew best disjoint routes are chosen and flow is
spread as done earlier. Fig. 13 shows one of such comparison.
We see that spreading reduces the tail probability and there are
tradeoff points aroundx = 15. Although the performance of
state-dependent routing schemes are sensitive to the variability
of traffic, we see that combining a proactive spreading scheme
can reduce such sensitivity.

IX. CONCLUSION AND FUTURE WORK

In this paper we propose a simple model for the spatial
distribution of energy burdens in a multihop ad hoc wireless
network. Our primary contribution is to use these models
to investigate the design and potential benefits of proactive
energy balancing multi-path routing schemes. To do so we
develop a simple second order approximation permitting one to
investigate tradeoffs of several types, e.g., for ad-hoc networks
with or without replenishing and with energy storage capabil-
ities. The essential tradeoff is between the mean and variance
of a spatial energy (flow) balancing scheme. For our proposed
models one might attempt to identify Pareto optimal energy
balancing strategies, e.g., one minimizing the variance subject
to a mean energy constraint, or conversely one minimizing
the mean energy burden subject to a variance constraint. To
simplify matters we consider flow/energy balancing on regular
grid model for a simple parameterized family of spreading
schemes. This permits us to concretely evaluate how this
tradeoff should be optimized for the various network types
and possible design criteria. The results are insightful but
perhaps not unexpected. For networks with increased energy
storage and/or replenishing capabilities it pays to be more
aggressive in spreading traffic so as to reduce the variance
in the energy burden since the additional energy burden can
be smoothed by energy reserves or new energy sources – one
must however ensure that the energy burden does not exceed
the replenishing capability. For the most part our simulations



confirm our analytical results and permitted us to evaluate
more general regimes of interest.

We note however that the traffic patterns and network
geometry used in our simulations are fairly benign in that
they are fairly homogeneous in time and space. In practice,
one would expect to see irregular topologies and imbalances
and variability in traffic loads. These in turn would lead to
additional variability in the energy burdens on the network.
We expect, that the benefits of proactive load balancing to be
be more prominent and sensitive to design in the presence of
the aforementioned fluctuations. The degree of spreading, e.g.,
w, might advantageously be exploited to adaptively smooth
out such spatial variabilities and achieve improved balancing
of energy burdens coupled with improved performance on
network lifetime.

Finally we note that our focus here has been on a pre-
liminary analysis of proactive energy balancing. As such we
have used a simplified energy model, appropriate to study
a routing scheme. Yet overheads associated with setting up
multi-path routes, or other sources of energy expenditure or
savings, e.g., putting nodes to sleep, will play a role. For
example, in our model we have for the most part ignored
MAC layer. In practice the temporal granularity on which
load balancing is performed might be critical. For example,
fine grain spreading of traffic might cause contention for
transmission among neighboring paths lessening the benefits
from an energy perspective. Such interactions need to be
studied carefully, and might be lessened by increasing the
granularity of spreading. These and additional aspects of the
proposed routing strategies are part of our ongoing work.

APPENDIX

Proof of Lemma 2: We consider only the left half part of the
geometry using the symmetric property of the problem. LetU
be the grid set of the left half part, i.e.U := {(i, j) | 0 ≤ i ≤
l/2, |j| ≤ w−1

2 }. We have that

∑

i,j∈U

e2
i,j =





(w−1)/2∑

k=0

∑

|i|+|j|=k

e2
i,j



 (21)

+
∑

|i|+|j|>(w−1)/2

{e2
i,j} (22)

We minimize the summation in two parts, (21) and (22). For
(21), whenk = 1, the inner summation ise2

1,0 + e2
0,1 + e2

0,−1.
Since the flows at(1, 0), (0, 1), (0,−1) are originated from the
source at(0, 0), the sum of the total outgoing flows at these
locations must sum up to 1, i.e.,e1,0 + e0,1 + e0,−1 = 1 by
the flow conservation. Then by Cauchy-Schwarz inequality,
we have that

e2
1,0 + e2

0,1 + e2
0,−1 ≥

1
3
{e1,0 + e0,1 + e0,−1}2 =

1
3
,

and this holds whene1,0 = e0,1 = e0,−1 = 1
3 . Similarly,

∑

|i|+|j|=k

e2
i,j ≥

1
2k + 1





∑

|i|+|j|=k

ei,j





2

,

and the equality is achieved whenei,j = 1
2k+1 .

For (22), it can be shown that the minimization is achieved
by setting allei,j equal to 1

w due to the constraint (14). We
refer the reader to [8] for the proof.

Proof of Theorem 3: We have that the energy request arrival
process is Poisson with rateλ per unit time per unit space.
SinceSi is defined as the energy request in unit time interval,
Si is stochastically equivalent to the shot-noise process inR2

with intensityλ. From Lemma 1, then-th order cumulant of
Si is χ(n)(1), thus we have that

C(θ) =
∞∑

n=1

χ(n) θ
n

n!
= λ

∞∑
n=1

E[
∫

Φ0

h(x, Φ0)ndx]
θn

n!

= λE[
∫

Φ0

∞∑
n=1

h(x, Φ0)n θn

n!
dx]

= λE[
∫

Φ0

{eθh(x,Φ0) − 1}dx].
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